imhotype (imhotype) wrote,
imhotype
imhotype

Categories:

Современные концепции в естествознании и новые парадигмы в биологии и медицине (часть II)


начало

Новые парадигмы в биологии и медицине

Несмотря на современные достижения фундаментальных наук, академическая медицина всё ещё преимущественно опирается на принцип редукционизма с его однонаправленными линейными связями типа «причина – следствие». По-прежнему единственным неоспоримым доказательством остаются рандомизированные двойные слепые исследования. С их помощью пытаются исключить субъективность и индивидуальность, а также внести воспроизводимость опытов, как в классической физике. Конечно, такой подход позволил достигнуть колоссального прогресса в области медицины неотложных состояний, но для большинства хронических болезней это оказывается бесполезным, а с учетом новых достижений естествознания – еще и неправильным. Линейный принцип здесь не действует, подавление основных симптомов не может излечить хроническое заболевание. Тем не менее, неформальные парадигмы в биологии и медицине упорно пробиваются через критику и непризнание.

Гурвич Александр Гаврилович
(1874 – 1954) Русский и советский биолог,
открывший сверхслабые излучения живых систем
и создавший концепцию морфогенетического поля.
Лауреат Сталинской премии по биологии
Ещё в 1912 г. молодой русский учёный А.Г. Гурвич, размышляя над тем, как из линейной последовательности молекул возникает высокоупорядоченная трехмерная биологическая структура, пришёл к выводу о существовании некого организующего начала, обеспечивающего целостность организма. Он назвал его «биологическим полем», приписывая ему информационную роль в обеспечении наследственности. Поводом для такого заключения послужили его собственные опыты с интенсивным центрифугированием яиц амфибий. Оно, по замыслу исследователя, должно было бы разрушить наследственный материал. Вопреки ожиданиям, дальнейшее развитие эмбрионов завершалось так же, как и у неповрежденных яиц. Эти предположения подкреплялись работами немецкого учёного Г. Дриша, доказавшего, что экспериментально вызванные резкие отклонения могут и не помешать благополучному развитию. При этом отдельные части организма формируются вовсе не из тех эмбриональных структур, что в норме, но всё же формируются! Уже в советское время, в 1923 г., А.Г. Гурвичем был выполнен эксперимент, подтверждающий его первоначальную точку зрения. Корешки двух луковиц расположили под прямым углом по отношению друг к другу на расстоянии 2-3 мм. При этом кончик одного корешка был направлен строго на зону клеточного размножения другого. Оказалось, что нечто, исходящее из кончика корня-индуктора, заставляло активнее делиться клетки корня-детектора.
Дальнейшие исследования выяснили, что речь идёт именно об излучении, а не о летучих химических веществах. Воздействие распространялось в виде узкого пучка – стоило слегка отклонить в сторону индуцирующий корешок, эффект пропадал. Пропадал он также, когда между корешками помещали стеклянную пластинку. А вот если пластинка была из кварца, эффект сохранялся! Это подсказывало, что излучение было ультрафиолетовым.
Позже его спектральные границы установили более точно — 190-330 нм, а среднюю интенсивность оценили на уровне 300-1000 фотонов в секунду на квадратный сантиметр. Иначе говоря, «митогенетические лучи», открытые Гурвичем, представляли собой ультрафиолетовое излучение среднего и ближнего диапазона чрезвычайно низкой интенсивности (по современным данным, интенсивность их ещё ниже — порядка нескольких десятков фотонов в секунду на квадратный сантиметр).
Работы А.Г. Гурвича по митогенезу до Второй мировой войны были весьма популярны в нашей стране и за рубежом. В его лаборатории активно изучали процессы канцерогенеза, в частности, было показано, что кровь онкологических больных, в отличие от крови здоровых людей, не является источником митогенетического излучения. В 1940 году учёному за работы по митогенетическому изучению проблемы рака присудили Сталинскую премию.
Однако «полевые» концепции Гурвича никогда не пользовались широкой популярностью, хотя и вызывали интерес. В окончательном варианте «Теория биологического поля» была опубликована в 1944 году. В ней резюмировалось, что гены не обладают всей полнотой наследственной информации и дополнительным информационным источником является сверхслабое ультрафиолетовое излучение, кванты которого выделяет за счёт реакции гликолиза каждая клетка живой ткани во время деления («митогенетические лучи Гурвича»). Катализаторами для этих процессов могут служить психоэмоциональные, нейроэндокринные, интоксикационные и природные факторы, способные повышать интенсивность излучения вплоть до разрушения клетки.
К сожалению, идеи А.Г. Гурвича оказались в стороне от основного пути «ортодоксальной» биологии. После открытия двойной спирали ДНК перед исследователями появились новые манящие перспективы. Цепочка «ген - белок - признак» привлекала своей конкретностью и кажущейся легкостью получения результата. Негенетические управляющие процессы в живых системах постепенно вытеснялись на периферию науки, а само их изучение стало считаться сомнительным. С развитием техники стало ясно, что свечение при химических реакциях (хемилюминесценция) – не такая уж экзотика. Слабое свечение сопровождает по существу все химические реакции, идущие с участием свободных радикалов. Собственное свечение животных клеток и тканей обусловлено преимущественно реакциями перекисного окисления липидов и реакциями, сопровождающими взаимодействие окиси азота и супероксид-радикала (О3-).
Казалось, что после успешной расшифровки генома человека и нашумевшего клонирования овечки Долли все вопросы по проблеме передачи наследственной информации решены. Однако, вскоре широкая общественность узнала, что около 80 % генов в организме человека и мыши идентичны, а вероятность успеха при клонировании млекопитающего составляет ничтожно малую цифру – 0,36%. Из 2500 яйцеклеток овцы было получено тридцать клонированных животных (Долли стала такой знаменитой, поскольку появилась первой), из них только десять были признаны относительно здоровыми. Остальные либо погибли, либо родились со значительными дефектами: некоторые заметно отставали в росте, другие, наоборот, росли неестественно быстро, при этом все преждевременно старели.
По-видимому, законы Грегора Менделя оказались точны лишь для гороха. Не исключено, что генетический код, на который возлагалось так много надежд, дал только одно скромное достижение, объяснив, как синтезируются белки. Но гены, отвечающие за производство белков, – это одно, а гены, определяющие пространственно-временную структуру биосистем – это совсем другое.
В начале XXI века генетику всё более замещает молекулярная биология, а дальнейшие успехи в изучении наследственности связываются с эпигенетикой – новым направлением молекулярной биологии, изучающим наследственные функции гена, не связанные с первичной структурой ДНК. В этой связи идеи А.Г. Гурвича, реализованные на современном уровне, вновь обрекают привлекательность и возможно могут пролить свет на тонкие механизмы висцеро-соматических и висцеро-висцеральных взаимоотношений.

(родился в 1924 г.) Академик РАМН,
доктор медицинских наук, профессор.
Председатель Сибирского филиала
АМН СССР (1971 - 1980), директор
Института клинической и экспериментальной
медицины СО РАМН (1971 - 1992), директор
института общей патологии и экологии
человека СО РАМН (1992-1998).
В 1966 г. тогдашний ректор Новосибирского медицинского института, профессор В.П. Казначеев с соавторами, развивая идеи А.Г. Гурвича, высказал мысль о возможной информационной роли световых потоков, излучаемых биологическими объектами, в межклеточных и межтканевых взаимодействиях.
В качестве модели была использована система двух одинаковых тканевых культур, размещенных в изолированных герметически укупоренных кюветах таким образом, что между клетками сохранялся лишь оптический контакт через стеклянную или кварцевую пластинки. При этом одна из тканевых культур подверглась воздействию инфекционного агента (вирусы Коксаки или чумы птиц).
Оказалось, что если клетки разделяет нормальное стекло (не пропускающее ультрафиолетовое излучение), то вторая культура остаётся здоровой. Если же используется кварцевое стекло (пропускающее ультрафиолет), то заболевает и вторая культура, хотя она не имела прямого контакта ни с вирусами, ни с первой культурой.
Открытый В.П. Казначеевым, Л.П. Михайловой и С.П. Шуриным «зеркальный цитопатический эффект» позволил сделать вывод о наличии дистантных межклеточных взаимодействий, лежащих в спектре ультрафиолетового излучения. Вероятно, это излучение содержит информацию о процессе умирания заражённых клеток, воспринимаемую здоровой культурой.
К настоящему времени исследования по «зеркальному цитопатическому эффекту» воспроизведены в ряде лабораторий нашей страны и за рубежом. Например, эксперименты С. Смита и Ж. Монро показывают, что определенные электромагнитные колебания могут вызывать такие же аллергические реакции, как и введенный аллерген.
Ксен Чен (Институт биофизики, Пекин) наблюдал, что «оптический контакт» между двумя порциями крови влияет на характер иммунных реакций, протекающих в них.

К сожалению, несмотря на огромный авторитет в науке, академик В.П. Казначеев не избежал критики за свои достижения в биоэнергоинформатике со стороны руководителя комиссии по борьбе с лженаукой РАН академика Э.П. Круглякова, внёсшего его в неофициальный список учёных, рекламирующих псевдонаучные концепции. В наши дни впечатляющие данные по регистрации сверхслабых излучений от биологических объектов получены руководителем Международного института биофизики (Марбург, Германия) Фрицем-Альбертом Поппом (Fritz-Albert Popp). Считая себя последователем А.Г. Гурвича, Ф.-А. Попп (фото 10) на основе разработанной им технологии биофотонного анализа пришёл к выводу, что от всех организмов исходит слабый свет. Интенсивность этого свечения можно сравнить со светом свечи, находящейся на расстоянии 20 км от наблюдателя. Такая сила свечения соответствует излучению нескольких фотонов в секунду.
По мнению Поппа, клетки, подобно лазерам, излучают строго когерентные биофотоны, являющиеся универсальными носителями информации. С их помощью биологические структуры общаются между собой, направляя друг другу сведения о своем состоянии, координируют и согласовывают свои действия. Получив биофотон, клетка индуцирует аналогичный световой импульс. Таким образом, поле биофотонов пронизывает весь организм, благодаря чему информация может поступать в любую часть тела со скоростью света.
Чувствительность биообъектов лишь к очень слабому излучению определённого диапазона не случайна. Это предохраняет их от воздействия со стороны обычного «светового шума». Всего один фотон может запустить процесс деления, в то время как на окружающий мощный рассеянный свет клетка может и не реагировать.
По мнению оппонентов Ф.-А. Поппа, биофотонное излучение всего лишь побочный продукт жизнедеятельности – обычная эмиссия квантов света, которая сопровождает многие биохимические реакции и не несет регуляторной информации.
В 1979 г. основоположник современной иридологии J. Deck (см. раздел 2.1.) совместно Ф.-А. Поппом выдвинули оригинальную гипотезу, состоящую в том, что каждая клетка живой ткани содержит суперголографическую информацию обо всех клетках организма. Авторы постулируют три основных положения своей гипотезы.
Интенсивность излучения клетки возрастает при её патологии и гибели, причём количество излучаемых фотонов прямо пропорционально числу отмирающих клеток. Излучение живых клеточных систем отличается от мёртвых своим спектральным распределением. Излучение живых клеток, в противоположность мёртвым, происходит не спорадически, а непрерывно и длительно. Итогом работы явилось предположение, что адаптационно-трофические знаки радужной оболочки глаза являются ни чем иным как голографическим проявлением когерентных полей излучения. Известно, что атомная радиация в низких дозах оказывает ростостимулирующее действие на самые разные растительные и животные объекты (радиационный гормезис). Недавние исследования члена-корреспондента РАН А. М. Кузина и его сотрудников раскрыли механизмы этого явления. По их данным, семена редиса, получившие низкую дозу облучения, не только сами прорастают вдвое эффективнее, чем контрольные, но и стимулируют рост необлученных семян. Эффект сохраняется, если семена-индукторы и детекторы разделяются кварцевой, но не стеклянной пластинкой. Полученные результаты свидетельствуют, что возбуждение живых систем с помощью ионизирующей радиации запускает в них процессы вторичного излучения уже в УФ-диапазоне. Всё это ещё раз подтверждает данные А. Г. Гурвича, В.П. Казначеева и Ф.-А. Поппа. Естественно, возникает вопрос: нельзя ли создать условия, при которых информация, заложенная в здоровых клетках, будет исцелять больные? Дальнейшее развитее биофизики показало, что это возможно. [...] <table border="1" cellpadding="4" cellspacing="4" style="margin: 0px 5px 2px 0px; float: left;">

Девятков Николай Дмитриевич
(1907-2001) Патриарх российской
радиоэлектроники и ее применения
в медицине

Английский физик-теоретик.
Основные работы посвящены
физике твердого тела. Автор
теории сверхпроводимости.
Разработал теорию когерентных колебаний
в биологических системах.
В качестве примера можно привести работы академика Н.Д. Девяткова, который вместе с сотрудниками в 60-х годах XX века обнаружил, что электромагнитное излучение крайне высокой частоты (КВЧ), называемое ещё микроволновым излучением миллиметрового диапазона (30-300 ГГц), на определённых, резонансных для конкретной ткани или органа частотах, обладает «информационным» влиянием. Оно способно управлять биологическими процессами на уровне межклеточных взаимодействий, изменяя состояние полимеров воды. Под его руководством были разработаны теоретические основы КВЧ-терапии, начато промышленное производство терапевтических КВЧ-аппаратов серии «Явь».
Английский физик Г. Фрёлих (фото 12) в 1977-1988 годах теоретически обосновал и получил экспериментальные доказательства факта порождения живыми клетками переменных электромагнитных полей, обладающих, подобно лазерному излучению, высокой степенью когерентности (упорядоченности, согласованности). Основные положения его теории состоят в следующем. Все живые клетки обладают определённым электростатическим зарядом, который ритмически изменяется под влиянием метаболических процессов, происходящих в них. Естественно, что ритм таких колебаний индивидуален для каждой специализированной тканевой структуры.
Однако на уровне органа или целостного организма за счёт явлений самоорганизации этот первоначально хаотический процесс упорядочивается, что ведёт к образованию когерентных электромагнитных волн. В 1964 – 1966 гг. сотрудник Института теоретической физики в Киеве, участник советского атомного проекта профессор А.С. Давыдов попытался применить физические законы, выведенные для неживой материи, к биологии с целью объяснения на молекулярном уровне механизма сокращения поперечнополосатых мышц. В 1986 г. ему удалось зарегистрировать перенос электронов вдоль пептидных цепей белковых молекул уединенной волной (солитоном). Он писал: «В молекулярных цепях с ангармоническим взаимодействием между молекулами возможны возбуждения типа акустических солитонов. Такие солитоны представляют собой локальные деформации полипептидной цепи, перемещающиеся со скоростью, превышающей скорость звука. В некоторых случаях солитонные волны могут захватывать электрон и переносить его вдоль цепи. Данный эффект может играть определённую роль и в функционировании биологических систем».[...]
В 1980 г. А.Н. Мосолов из Новосибирска с помощью световой и лазерной микроскопии обнаружил в клеточных ядрах (хромосомах) живых тканей некие вибрирующие (звучащие) сферические структуры. В 1985 г. группе под руководством П.П. Гаряева при исследовании излучения фотонов с поверхности ДНК in vitro удалось зафиксировать долго не затухающие сложно модулированные по частоте колебания звукового диапазона. Первоначально это крайне необычное наблюдение было принято за экспериментальную ошибку. Лишь через 6 лет исследователи решились вновь повторить эксперименты. Было подтверждено, что живые клетки, их ядра, а так- же выделенная из хромосом ДНК действительно генерируют акустические поля, напоминающие «незамолкающую сложную мелодию с повторяющимися музыкальными фразами». Такие повторы по ряду признаков походили на солитонный процесс фрёлиховско-давыдовского типа.
Впоследствии П.П. Гаряевым, А.А. Березиным (Отдел теоретических проблем РАН) и А.А. Васильевым (Физический институт РАН) было высказано предположение, что излучаемые хромосомами электромагнитные волны свето-звукового диапазона являются источником эпигенетической информации.
В основу идей Гаряева - Березина - Васильева («ГБВ-модель») заложены принципы когерентных физических излучений, голографии, солитоники и фрактальности. Их суть состоит в том, что геном высших организмов рассматривается как солитонный биоголографический компьютер, формирующий пространственно-временную структуру биосистем (например, развивающихся эмбрионов) по волновому образу-предшественнику.
Многолетнее изучение генома человека, проводимое по международной программе с участием сотен учёных, показало, что все 32 тысячи человеческих генов, участвующих в непосредственной кодировке белков, составляют всего 1-5% от общей длины ДНК в хромосомах. Именно они и выполняют функции по реплицированию РНК и белков. Остальные участки ДНК, составляющие её большую часть, были названы обескураженными генетиками «бессмысленными», «некодирующими», «эгоистическими» или «мусорными» («junk» - барахло, мусор) ДНК.
У бактерий «бессмысленных» участков вообще нет, у дрожжей они также почти отсутствуют. По мере повышения уровня организации живого организма накапливается все больше некодирующей ДНК.
Есть мнение, что «мусорная» часть ДНК является кладбищем генетического материала вирусов, локализованного и инактивированного клеткой. Предполагают также, что «эгоистические» участки могут оказаться резервуаром эволюции или складом «запчастей». Возможно, клетка использует фрагменты некодирующей ДНК для ремонта поврежденного участка двойной спирали.
С точки зрения авторов ГБВ-модели «мусорная» часть ДНК представляет собой главную «интеллектуальную» структуру всех клеток. Её жидкокристаллический континуум является нелинейно-оптической средой, способной в определенных условиях функционировать как лазер с перестраиваемыми длинами волн, а также как лазер на солитонах («фрёлиховских модах»).
Работая над теорией волнового генома, исследователи группы П.П. Гаряева показали, что для описания живого человека в гене должно содержаться, как минимум 1025 Бит информации, в то время как ДНК способна хранить максимум 115 Бит. Что же является дополнительным источником наследственной памяти?
В качестве таких информационных накопителей могут выступать инфраструктуры внеклеточных матриксов, цитомембраны, цитоскелета и ядра клетки, содержащие фоточувствительные белки типа порфиринов или родопсина. Другим важнейшим бионосителем информации является желатин - производное коллагена, а также другие коллагеновые гели. Кроме того, генераторами и акцепторами информационных волн внутри биообъектов являются различные жидкокристаллические структуры, способные образовывать фракталы, например, внутриклеточная вода. Все эти субстраты формируют в живом организме подобие дифракционных решеток. При попадании на них лазерного излучения, генерируемого хромосомой, в акустических, инфракрасных, ультрафиолетовых и других диапазонах формируется объёмная голограмма.
Ещё во время первых экспериментов с газоразрядной визуализацией С. Кирлиан решил проверить, как на снимках будет выглядеть свежий срез листа какого-нибудь дерева. На удивление исследователя вместо листа с отрезанной частью на фотопластинке проявлялся абсолютно целый лист. Этот эффект сохранялся в течение многих часов. Только на следующие сутки отрезанная часть стала исчезать с негатива.
В 1970-х годах опыты по фотографированию листа в высоковольтном высокочастотном поле со строго определенными параметрами были повторены во многих лабораториях мира. «Фантомный листовой эффект» в виде светящегося изображения целого листа, даже если у него отсутствует некоторая часть, регистрировался примерно в 10 - 15% наблюдений.
Данный факт, возможно, является иллюстрацией к тому, как хромосомы, генерирующие лазерное излучение в широком диапазоне, создают трёхмерный голографический фантом, который является своеобразным сборочным чертежом «строящегося объекта». В дальнейшем эта матрица наполняется конкретным содержанием - белками, синтезируемыми при помощи обычного генетического кодирования.
Вместе с тем, каждый живой организм посредством эндогенных излучений непрерывно передает в пространство информацию о строении, функциях и состоянии составляющих его структур. При патологии над «больной» частью тела конфигурация поля изменяется, что обусловлено метаболической активизацией или, наоборот, вялостью энергетических процессов в данной области. Важно понять, что нет непреодолимой границы между генами и другими клеточно-внеклеточными биополимерами, являющимися супергенами, тем самым подчёркивается принципиальная нелокальность генома. Более того, гены могут быть составной частью голографических решеток супергенов и регулировать их полевую активность.[...] ©
Миовисцерофасциальные связи в традиционном и современном представлении
Новокузнецк: ООО «Полиграфист», 2010. - 221 с.
Авторы: К.Б. Петров – д.м.н., профессор - заведующий кафедрой восстановительной медицины Государственного образовательного учреждения дополнительного профессионального образования «Новокузнецкий государственный институт усовершенствования врачей Федерального агентства по здравоохранению и социальному развитию».
Т.В. Митичкина, 1960 г. рождения – к.м.н., доцент той же кафедры. Изучала характер реперкуссионных проявлений из гепато-билиарной зоны. Убедительно доказала роль миовисцерофасциальных связей в патогенезе несегментарных отраженных висцеросоматических синдромов при патологии внутренних органов.
Tags: КНИЖНАЯ ПОЛКА, Наука и ЖестЪ
Subscribe

Recent Posts from This Journal

  • Post a new comment

    Error

    Comments allowed for friends only

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

  • 2 comments